Posted on: 24 July 2014
Professor John Boland, Principal Investigator at AMBER – the Science Foundation Ireland-funded material science centre at Trinity College Dublin – and Research Professor in Trinity's School of Chemistry, has made a world-first breakthrough in the area of material mechanics.
Professor Boland and his team, along with Professor Sader from the University of Melbourne, has developed a simple, robust approach to measure one of the most fundamental engineering properties – the Poisson’s Ratio – on the nanoscale; a scale invisible to the human eye and 10,000 times smaller than the width of a human hair.
Poisson’s Ratio describes the fundamental elasticity of any solid (how a material’s width changes when placed under a mechanical load). It is a basic principle of engineering that dates back to 1811 and an important guide in the construction of buildings, skyscrapers and bridges. It allows engineers and builders to identify how much a material can be compressed and stretched and how much pressure it will withstand, before it collapses.
The Poisson’s Ratio has never before been measured on the nanoscale. Professor Boland’s discovery will have a huge impact on the development of flexible electronics, wearable technology and implantable devices. It now means that ICT and electronics manufacturers and designers can gauge the elasticity of micro wires and metals and can test their suitability for use in flexible electronics such as smartphones, watches and tablets.
Commenting, Professor Boland said: “More than 200 years after Poisson’s Ratio was first introduced, we are delighted to have made this breakthrough on the nanoscale. The Poisson’s Ratio is crucial to construction and engineering, ensuring that all load-bearing structures such as buildings and bridges are made of the correct materials and ultimately are safe and sturdy. It has been a hugely effective guide for large scale structures, but it has until now, been unavailable to assist in the design of nanoscale structures that are so important for today’s technologies."
"By translating this basic mechanical concept to the nanoscale, essentially measuring the elasticity of materials that are just a few hundred atoms across, it will open up huge opportunities for electronics and ICT. As we move to an age of wearable technology, it is crucial that scientists understand how materials respond at their very basic level."
The discovery has been published in the prestigious peer-reviewed scientific publication Nature Communications.
Professor Mark Ferguson, Director General of Science Foundation Ireland and Chief Scientific Adviser to the Irish Government, said: “AMBER, as a new research centre, has been delivering on SFI strategy of excellent science with impact. The impact of Professor Boland’s discovery will be hugely significant for the electronics industry worldwide, which is growing apace. Wearable technology is becoming the norm, and its growth will undoubtedly be accelerated as a result of this development.”
About AMBER
AMBER (Advanced Materials and BioEngineering Research) is a Science Foundation Ireland-funded centre, which provides a partnership between leading researchers in material science and industry to develop new materials and devices for a range of sectors, particularly the ICT, medical devices and industrial technology sectors. The centre is hosted in Trinity College Dublin, working in collaboration with CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices), the Trinity Centre for Bioengineering and with University College Cork and the Royal College of Surgeons of Ireland.